

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE

No. 1737

EFFECT OF VARIATION IN DIAMETER AND PITCH OF RIVETS ON COMPRESSIVE STRENGTH OF PANELS

WITH Z-SECTION STIFFENERS

PANELS THAT FAIL BY LOCAL BUCKLING AND HAVE
VARIOUS VALUES OF WIDTH-TO-THICKNESS RATIO
FOR THE WEBS OF THE STIFFENERS

By Norris F. Dow and William A. Hickman

Langley Aeronautical Laboratory
Langley Field, Va.

Washington

November 1948

AFII C

42 6 62 2 3

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1737

EFFECT OF VARIATION IN DIAMETER AND PITCH OF
RIVERS ON COMPRESSIVE STRENGTH OF PANELS
WITH Z-SECTION STIFFENERS

PANELS THAT FAIL BY LOCAL BUCKLING AND HAVE

VARIOUS VALUES OF WIDTH-TO-THICKNESS RATIO

FOR THE WEBS OF THE STIFFENERS

By Norris F. Dow and William A. Hickman

SUMMARY

An experimental investigation is being conducted to determine the effect of varying the rivet diameter and pitch on the compressive strength of flat 24S-T aluminum-alloy Z-stiffened panels of the type for which design charts are available. The present part of the investigation is concerned with panels which have various values of width-to-thickness ratio of the webs of the stiffeners and have such length that failure is by local buckling. The results show that for these panels, regardless of their stiffener widths, the compressive strengths increased appreciably with either an increase in the diameter of the rivets or a decrease in the pitch of the rivets.

INTRODUCTION

The design and analysis of sheet-stiffener panels for aircraft structures have been the subject of extensive experimental and theoretical investigations, but the determination of the size and pitch of rivets for attaching sheet to stiffener is a problem that has not been adequately solved. In reference 1 charts and procedures are presented for the design of Z-stiffened panels to carry a given intensity of loading at a given panel length. The test data on which these design charts were based, however, were obtained for an arbitrary diameter and pitch of the rivets. An investigation is therefore being conducted in the Langley structures research laboratory of the National Advisory Committee for Aeronautics to determine the effect of a variation in the rivet diameter and pitch on the strength of 24S-T aluminum-alloy panels with longitudinal Z-section stiffeners of the type for which the design charts of reference 1 were prepared.

Four basic variables have been considered in this investigation of the effect of riveting on panel strengths:

- (1) The ratio of stiffener thickness to skin thickness t_W/t_S
- (2) The slenderness ratio L/ρ
- (3) The ratio of stiffener spacing to skin thickness $b_{\rm S}/t_{\rm S}$
- (4) The ratio of stiffener width to stiffener thickness $b_{f W}/t_{f W}$

The range of values tested for each variable is given in table 1, which also includes the references in which the data are presented.

The results of varying the ratio of stiffener width to stiffener thickness b_W/t_W are given in the present paper.

SYMBOLS

L	length of specimen, inches
ρ	radius of gyration, inches
L/ρ	slenderness ratio
W	width of specimen, inches
$\mathfrak{d}_{\mathbb{S}}$	spacing of stiffeners on sheet, inches
$\mathfrak{b}_{\mathtt{A}}$	width of attachment flange of stiffeners, inches
$^{\mathrm{b}}\mathbf{w}$	width of web of stiffeners, inches
${ t b_F}$	width of outstanding flange of stiffeners, inches
^t s	thickness of sheet, inches
^t w	thickness of web of stiffener, inches
ď	diameter of rivets, inches
р	pitch of rivets, inches
h	depth of countersink for rivets, inches
$\sigma_{\mathbf{c} \mathbf{y}}$	compressive yield stress for material, ksi
₫f	average compressive stress at failing load, ksi
С	coefficient of end fixity in Euler column formula

NACA IN No. 1737

P_i compressive load per inch of panel width, kips per inch

R radius of bend

TEST SPECIMENS AND METHOD OF TESTING

For all parts of the investigation. The specimens consisted of 24S-T aluminum-alloy panels having longitudinal Z-section stiffeners as shown in figure 1. The stiffeners were riveted to the sheet with Al7S-T flat-head rivets (AN442AD). In all cases the minimum rivet pitch used was equal to three times the rivet diameter. The rivets were driven by the NACA flush-riveting process in which the rivet is inserted with the head opposite the countersumk end of the hole, the shank of the rivet is driven into the cavity formed by the countersink, and the excess material is removed with a milling tool. A countersink angle of 60° was used.

Ultimate compressive loads for the specimens were determined in a hydraulic testing machine having an accuracy of one-half of 1 percent of the load. The ends of the specimens were ground accurately flat and parallel in a special grinder, and the method of alinement in the testing machine was such as to insure a uniform bearing over the ends of the specimens.

For the present part of the investigation. Five width-to-thickness ratios for the stiffeners, corresponding to values of b_W/t_W of 20, 25, 30, 40, and 50, were investigated. (See fig. 2.) Two thicknesses of sheet were used to give two ratios of stiffener thickness to sheet thickness $\left(\frac{t_W}{t_S}\right) = 1.00$ and 0.63. The lengths of the panels were so chosen $\left(\frac{L}{\rho}\right) = 20$ that no column bending failures occurred. The proportions $\frac{b_S}{t_S} = 25$, $\frac{b_A}{t_W} = 9.5$, and $\frac{b_F}{b_W} = 0.4$ were the same for all panels.

The with-grain compressive yield strength $\sigma_{\rm Cy}$ of the material before forming was found to be as follows: 47.2 ksi (max.), 45.2 ksi (av.), and 44.0 k·i (min.).

RESULTS AND DISCUSSION

The results are presented in figure 3 and table 2. In figure 3, σ_f , calculated simply as the failing load divided by the cross-sectional area of the panel, is plotted against the ratio of the rivet diameter

to the sum of the thicknesses of sheet and stiffener $\frac{d}{t_S} + t_W$ in order to present the results in a manner similar to that used in references 2, 3, and 4. Figure 3 shows that for all values of t_W/t_S and b_W/t_W investigated the compressive strengths increased with either an increase in the diameter of the rivets or a decrease in the pitch of the rivets.

These results differ from those of reference 5 in which the compressive strength of Z-stiffened shells was found to change very little with rivet spacing when failure occurred by local buckling of the stiffeners. The panel tests described in reference 5, however, covered an entirely different range of proportions from that of the present investigation. In

reference 5 the proportions covered were such $\left(\frac{t_W}{t_S} = 2 \text{ or } 3, \frac{b_S}{t_S} = 350\right)$

that the sheet contributed only a small amount to the load-carrying ability of the assembly. Changing the rivet pitch over the range investigated

therein $\left(\frac{p}{t_S + t_W}\right)$ = 14 to 50, or even increasing it to considerably larger.

values of $\frac{\mathbf{p}}{t_S + t_W}$ so that the sheet contributed a negligible load-

carrying capacity, would be expected to produce only small changes in panel strength.

CONCLUDING REMARKS

Results are presented of an investigation to determine the effect of varying the rivet diameter and pitch on the compressive strength of flat 24S-T aluminum-alloy Z-stiffened panels of the type for which design charts are available. The present part of the investigation is concerned with panels which have various values of width-to-thickness ratio of the webs of the stiffeners and have such length that failure is by local buckling. The results show that for these panels, regardless of their width-to-thickness ratio, the compressive strengths increased appreciably with either an increase in the diameter of the rivets or a decrease in the pitch of the rivets.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., September 11, 1948

REFERENCES

- 1. Schuette, Evan H.: Charts for the Minimum-Weight Design of 24S-T Aluminum-Alloy Flat Compression Panels with Longitudinal Z-Section Stiffeners. NACA Rep. No. 827, 1945.
- 2. Dow, Norris F., and Hickman, William A.: Effect of Variation in Diameter and Pitch of Rivets on Compressive Strength of Panels with Z-Section Stiffeners. I - Panels with Close Stiffener Spacing That Fail by Local Buckling. NACA RB No. L5G03, 1945.
- 3. Dow, Norris F., and Hickman, William A.: Effect of Variation in Diameter and Pitch of Rivets on Compressive Strength of Panels with Z-Section Stiffeners. Panels of Various Lengths with Close Stiffener Spacing. NACA TN No. 1421, 1947.
- 4. Dow, Norris F., and Hickman, William A.: Effect of Variation in Diameter and Pitch of Rivets on Compressive Strength of Panels with Z-Section Stiffeners. Panels of Various Stiffener Spacings That Fail by Local Buckling. NACA TN No. 1467, 1947.
- 5. Kromm, A.: Einfluss der Nietteilung auf die Druckfestigkeit versteifter Schalen aus Duralumin. Luftfahrtforschung, Bd. 14, Lfg. 3, March 20, 1937, pp. 116-120.

TABLE 1.- RANGE OF VALUES TESTED FOR EACH

VARIABLE IN THE INVESTIGATION OF THE

EFFECT OF RIVETING ON PANEL STRENGTH

tw ts	ь <u>Г</u>	<u> </u>	bw tw	Reference
0.51 .63 .79 1.00 1.25	20	25	20	2
0.63 1.00	20 40 70 120	25	20	3
0.63 1.00	20	25 30 35 40 50 60 75	√ 20	4
0.63 1.00	20	25	20 25 30 40 50	Present paper

NACA

TABLE 2.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS SHOWING EFFECTS OF VARYING RIVET PITCH AND RIVET DIAMETER

Diam. of rivets, d	Depth of countersink, h	Pitch of rivets,	Average stress at failing load, σ_f	P ₁ L/√6			
(in.)	(1n.)	(in.)	(ksi)	(ks1)			
t _s = 0.064 in	$t_S = 0.064$ in.; $b_S = 1.60$ in.; $L = 10.40$ in.; $W = 8.64$ in.; $b_W = 1.25$ in.; $b_F = 0.51$ in.						
	tw ts	1.00; $\frac{b_8}{t_8} = 25^a$	$; \frac{t_W}{b_W} = 20$				
1/16	0.035	3/16 3/8 5/8 15/16 15/16	43,050 41.450 36.855 038.380 29.300	1.233 1.150 1.013 1.093			
		1 3 .	26.700	.768			
3/32	.040	9/32 3/8 5/6 15/16 15 15	44.800 43.500 538.070 640.035 33.400	1.303 1.245 1.069 1.140			
		13	30.700	.891			
1/8	.050	3/8 5/8 15/16 15/16 15/6	44.600 - 543.735 541.710 34.750 32.200	1.317 1.227 1.156 .990			
5/32	. 060	15/32 5/8 15/16 15/16 15 16 13	45.000 43.870 40.500 36.100 ^b 33.800	1.318 1.197 1.142 1.032			
3/16	.065	9/16 5/8 15/16 15 16 13	45.340 44.700 40.850 37.600	1.329 1.232 1.160 1.077			
1/4	.065	3/4 15/16 15/ 16 14	44.485 44.485 38.900 35.350	1.272 1.290 1.104 1.022			

apata for $\frac{b_B}{t_S}$ = 25 is from reference 2.

bAverage of two tests.

TABLE 2.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued

Diam. of rivets, d (in.)	Depth of countersink, h (in.)	Pitch or rivets, p (in.)	Average stress at failing load,	L√ √8		
t ₈ = 0.064 in	.; bg = 1.60 in.; L =	12.50 in.; W = 8	(ksi) 5.64 in.; b _W = 1.60 in.;	(ksi) b= = 0.64 in.;		
·						
	t s =	1.00; $\frac{b_8}{t_8} = 25$;	tw = 25			
1/16	0.035	3/16 3/8 5/8 15/16	43.300 41.500 36.670 37.880	1.051 1.010 .945 .920		
		15/16	32.790	.801		
		14	26.850	.665		
3/32	.040	9/32 3/8 5/8 15/16 1 5	43.290 42.070 41.760 39.340 34.580	1.054 1.031 1.020 .956		
		13/4	30.200	.751		
1/8	.050	3/6 5/8 15/16 15 16 14	42.720 42.640 39.140 35.970	1.042 1.042 .953 .876		
		15/32	31.920 43.610	.795 1.060		
5/32	.060	5/8 15/16 1 <u>5</u> 16	43.450 40.220 36.420	1.053 .977 .882		
		13	33.760	.825		
3/16	.065	9/16 5/8 15/16	41.910 42.980 40.950	1.023 1.048 .996		
		1 <u>5</u>	36.510	.575		
		13	33.480	.814		
1/4	.065	3/4 15/16	41.230 40.210	1.002 -975		
		1 5	37.540	.906		
		14	33.310	.810		

NACA_

TABLE 2.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued

Depth of countersink, h (in.)	Pitch of rivets, p (in.)	Average stress at failing load, $\sigma_{\hat{r}}$ (ksi)	P ₁ L/√6 (ks1)
.; b ₈ = 1.60 in.; L =	15.66 in.; W = 8		
t _W =	1.00; $\frac{b_8}{t_8} = 25$;	$\frac{b_W}{t_W} = 30$	
0.035	3/16 3/8 5/8 15/16 1 <mark>5</mark>	39.790 38.810 37.450 35.390 31.830	0.596 .575 .542 .791 .710
	13/4	25.360	.568
.040	9/32 3/8 5/8 15/16 15 15	39.040 39.250 38.580 37.470 34.640	.880 .890 .872 .841 .777
	14	29.290	.658
.050	3/8 5/8 15/16 15 16 17	39.700 38.970 37.990 34.940 30.180	.901 · .575 .849 .783 .676
.060	15/32 5/8 15/16 15/16	39.320 39.190 37.850 36.730	.887 .857 .847 .827
.065	9/16 5/8 15/16 15 16	39.390 39.250 38.020 37.110 32.380	.865 .868 .854 .838
.065	3/4 15/16 15 16	37.950 37.530 36.830	.856 .843 .830 .746
	oountersink, h (in.) ; bg = 1.60 in.; L = tw tg 0.035 .040 .050 .060	countersink, h (in.) ; bg = 1.60 in.; L = 15.66 in.; W = 8 \[\frac{t_W}{t_B} = 1.00; \frac{b_S}{t_B} = 25; \] 0.035 \[\frac{3/16}{3/8} \\ \frac{3/8}{5/8} \\ \frac{15/16}{15} \\ \frac{1}{16} \\ \frac{1}{2} \\ \frac{3/8}{15/16} \\ \frac{1}{2} \\ \frac{15}{16} \\ \frac{1}{2} \\ \frac{15}{16} \\ \frac{1}{2} \\ \frac{15/32}{16} \\	countereink, (in.) rivets, (st.) at falling load, (r.) (ksi) ; b _B = 1.60 in.; L = 15.66 in.; W = 8.64 in.; b _W = 1.92 in.; \[\frac{t_W}{t_B} = 1.00; \frac{b_B}{t_B} = 25; \frac{b_W}{t_W} = 30 \] 0.035 \[\frac{3/16}{3/8} \\ \frac{3/8}{3/8} \\ \frac{3/8}

O

~NACA_

TABLE 2.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued

Diam. of rivets,	Depth of countersink h	Pitch of rivets,	Average stress at failing load,	P ₁ L√√8
d (in.)	(in.)	(in.)	(ks1)	(ks1)
t ₈ = 0.064 in.	.; b _g = 1,60 in.; L =	20.85 in.; ¥ =	8.64 in.; by = 2.56 in.	
•	t _W	= 1.00; $\frac{b_8}{t_8}$ = 25	;	
		3/16 3/8	30.940 29.930	0.609 .589
1/16	0.035	l 5/8	28.830	.567
7		15/16	26.530	.518
•		1 <u>5</u>	25.170	.496
		14	23.640	•477
		9/32	31.040	.638
		9/32 3/8	31.110	.623
3/32	.040	5/8 15/16	30.370 28.180	.598 .554
		15/16 1 16		
·			26.870	.530
		14	25.060	.502
		3/8	31,900	.636
		3/8 5/8	31.900 30.490	.662
1/8	.050	1 15/16	29 . 040	.568
		15 16	27.100	.543
		174	25.900	.524
		15/32	31.780	.638
		5/8	31.880	.624
5/32	.060	15/16	29.780	.596
		1 1 6	29.300	.579
,		14	26.470	.529
		9/16	31.990	,628
		5/8	31.150	.613
3/16	.065	15/16	30.770	.607
		1 <u>5</u>	28.840	.568
		13/4	26.170	.514
-		3/4	31.880	.642
1/4	.065	15/16	30.490	.598
		15 16	29.220	.576
		11	1	
		l	27.110	.530

Q

NACA -

TABLE 2.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued

Diam. of rivets,	Depth of countersink	Pitch of rivets,	Average stress at failing load,	P ₁ L/√6
(in.)	(in.)	(1n.)	(ksi)	(ksi)
tg = 0.064 in	.; bg = 1.60 in.; L =	26.04 in.; W = 8	3.64 in.; by = 3.20 in.;	by = 1.28 in.;
	t _W t _B	= 1.00; $\frac{b_8}{t_8}$ = 25;	$\frac{b_W}{t_W} = 50$	
1/16	0.035	3/16 3/8. 5/8 15/16	27.660 26.860 25.390 23.160	0.520 .503 .474 .434
		1 <u>5</u>	22.320	.421
		14/4	19.510	.368
3/32	.040	9/32 3/8 5/8 15/16 15 14	27.980 27.560 27.130 25.190 23.740 21.030	.536 .525 .510 .472 .446 .396
1/8	.050	3/8 5/8 15/16 15/16 17	27.720 27.480 26.530 25.200 21.690	.521 .516 .503 .475
5/32	.060	15/36 5/8 15/16 15 14 14	28.230 25.400 27.380 25.780 23.000	.5 ⁴ 2 .5 ⁴ 4 .515 .485
3/16	.065	9/16 5/8 15/16 1 16 1 4	28.060 27.540 26.830 25.560 23.240	.527 .517 .502 .480 .437
1/4	.065	3/4 15/16 1 5	28.010 27.310 26.440	.528 .508 .496
		14	24.340	.460

NACA

TABLE 2.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued

Diam. of rivets,	Depth of countersink	Pitch of rivets,	Average stress at failing load,	P <u>1</u> L/-√6
(in.)	(in.)	(in.)	σ _f (ks1)	(ks1)
t _S = 0.102 in.	; b _S = 2.55 in.; L =	9.44 in.; W = 1	3.39 in.; b _W = 1.28 in.;	b _F = 0.51 in.
	tw tg	= 0.63; $\frac{b_8}{t_8} = 25^6$	$a_{t}, \frac{t_{W}}{t_{W}} = 20$	
3/32	0.050	9/32 9/16 7/8 17 32 1 <u>19</u>	42.300 39.300 38.170	1.412 1.255 1.215
	-	1 <u>32</u> 1 <u>19</u>	35.400 34.500	1.158
		2 2	30.000	1.129 .984
1/5	.060	3/8 9/16 7/8	43.800 40.400 39.700	1.445 1.321 1.263
1/0	.080	1 7 1 7 32	37.800	1.237
		1 <u>19</u> 32 2	35.500 30.240	1.167 .984
		15/32 9/16 7/8	b 43.590 b42.335 41.050	1.431 1.388 1.310
5/32	.070	1 7	37.850	1,236
		1 <mark>19</mark> 32 2	35.750 31.800	1.168 1.049
		9/16 7/8	^b 45.150 ⁶ 41.150	1.451 1.327
3/16	.080	1 7 1 32	38.800	1,263
		1 19 2	3 5.1 50 31 . 900	1.253 1.042
		3/4 7/8	¹⁴ .050 ¹⁴ 3.000	1.471
1/4	.090	1 7 32	40.700	1.329
		1 19	39.800	1.307
		2	34.100	1.120

 $a_{\text{Data for}} \frac{b_{\text{S}}}{t_{\text{S}}} = 25 \text{ is from reference 2.}$

bAverage of two tests.

CAverage of three tests.

TABLE 2.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued

Diam. of rivets, d (in.)	Depth of countersink h (in.)	Pitch of rivets, p (in.)	Average stress at failing load, $\overline{\sigma_f}$ (ks1)	P ₁ L/-√5 (ksi)
t _S = 0.102 in	.; bg = 2.55 in.; L =	11.64 in.; W =	13.39 in.; bw = 1.60 in.	; by = 0.64 in.;
	t _W	= 0.63; $\frac{b_8}{t_8} = 25$	$\frac{b_W}{t_W} = 25$	
3/32	0.050	9/32 9/16 7/8	42.800 40.580 39.100	1.106 1.049 .990
		9/32 9/16 7/8 1 7 1 32 1 32 2	36.210 35.480 29.890	.93 6 .925 .754
1/8	.060	3/ 5 9/16 7/ 5 -7	42.650 41.910 40.190	1.102 1.075 1,034
		1 72 1 19 132 2	39.060 36.500 34.150	1.005 .9 ¹ 7 .891
5/32	.070	15/32 9/16 7/8	43.580 43.120 40.550	1.128 1.118 1.033
	ļ	17/2	40.510	1.051
		1 <u>19</u> 1 <u>32</u> 2	37.470 33.800	.957 .574
3/16	.080	9/16 7/8	42.170 40.340	1.089 1.041
5/16	.000	1 7 1 19 1 32	39.780 37.390·	1.030 .958
		2 3/4	33.850 42.960	1.123
1/4	.090	3/4 7/8 1 7 2	41.890 40.560	1.080
		1 19 1 32 2	37.420 34.380	.967

TABLE 2.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued

Diam. of rivets, d (in.)	Depth of countersink h (in.)	Pitch of rivets, p (in.)	Average stress at failing load, $\overline{\sigma}_{f}$	P ₁ L/√c (ks1)
t _S = 0.102 in.	; b _S = 2.55 in.; L =	= 14.52 in.; W = 1	(ksi) 13.39 in.; bw = 1.92 in.	
	$\frac{\mathtt{t_W}}{\mathtt{t_S}}$	= 0.63; $\frac{b_8}{t_8}$ = 25	$\frac{b_W}{t_W} = 30$	
3/32	0.050	9/32 9/16 7/8	39.410 37.690 36.090	0.900 .841 .800
		1 7 1 3 2	35.060	.775
		2	32.850 30.400	•733 .672
1/8	.060	3/8 9/16 7/8	39.800 38.960 37.780	.887 .874 .845
,		17/32	36.000	.805
		1 32 2	33.960 33.460	•754 •742
5/32	.070	15/32 9/16 7/8	39.970 39.110 37.850	.885 .868 .836
		1 7 2	37.860	.8 ⁴ 5
		1 <u>19</u> 1 <u>32</u> 2	35 . 990 . 33 . 290	.603 -753
_		9/16 . 7/8	.38.210 37.910	.838 .641
3/16	.080	1 <u>7</u> 32	37.070	.829
		1 <u>19</u> 1 32 2	36.080 33.290	.803 .741
		3/4 7/8	39.840 39.400	.883 .871
. 1/4	.090	1 7	38.220´	.8 ⁴ 5
,		1 <u>19</u> 1 <u>32</u> 2	36.570 33.930	.814 .754

NACA_

TABLE 2. - NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Continued

Diam. of rivets, d (in.)	Depth of countersink h (in.)	Pitch of rivets, p (in.)	Average stress at failing load, $\overline{\sigma_f}$ (ksi) 13.39 in.; bw = 2.56 in.	P ₁ L√√c (ksi)
tg = 0.102 in			·	.; b _F = 1.02 in.;
	t _B	= 0.63; $\frac{b_8}{t_8}$ = 25	;	
3/32	0.050	9/32 9/16 7/8	32.850 30.840 28.810	0.601 .565 .524
		1/32	28.010	.50€
	•	1 <u>32</u> 2	26.500 25.700	.487 .474
1/8	.060	3/8 9/16 7/8	32.910 32.850 30.500	.602 .597 .558
		17/32	29.550	.543
		1 <u>19</u> 32 2	27.960 26.610	.507 .486
5/32	.070	15/32 9/16 7/8	32.820 32.750 31.610	.59 5 .593 .577
		17/32	30.560	.560
		1 32 2	29.110 28.080	.533 .517
-77	040	9/16 7/8	33.440 32.140	.616 .588
3/16	.050	17/32	30.920	.564
}	,	1 <u>19</u> 1 <u>32</u> 2	29.510 27.930	•535 •507
- 0		3/4 7/8	33.110 33.380	.602 .614
1/4	.090	1 <u>7</u>	32.110	.586
		. 1 ¹⁹ . 32 2	31.130 30.270	•573 •556

TABLE 2.- NOMINAL DIMENSIONS OF Z-STIFFENED PANELS AND TEST RESULTS - Concluded

Diam. of rivets, d (in.)	Depth of countersink h (ir.)	Pitch of rivets, p (in.)	Average stress . at failing load, $\overline{\sigma_f}$ (ksi)	P ₁ L/√6 (ks1)
t _S = 0.102 in.	; bg = 2.55 in.; L =	25.70 in.; \ =	13.39 in.; b _W = 3.20 in	.; b _F = 1.28 in.;
!	t _h t _s	$\frac{1}{5} = 0.63; \frac{b_g}{t_g} = 2$	5; tw = 50	
3/32	0.050	9/32 9/16 7/8 1 7 1 7	29.500 27.880 25.590 23.540	0.474 .444 .405 .327
		1 <u>19</u> 1 <u>32</u> 2	22.290 · 21.670	. 354 . 343
1/8	.060	3/8 9/16 7/8	30.170 29.190 27.220	.481 .465 .432
		1 /2 1 19 1 32	26.750 24.000	.425 .378
		2	23.450	.378
5/32	.070	15/32 9/16 7 / 8	30.170 29.820 29.000	.479 .474 .462
		1 7	27.110	.433
		1 <u>19</u> 1 <u>32</u> 2	25. 670 24 . 600	.409 .394
3/16	.080	9/16 7/8	29.350 28.880	.466 .458
3/16	.050	1 7 1 <u>72</u> 1 <u>19</u>	27.650 26.070	.441 .415
		2	24.650	.393
1/4	.090	3/4 7/8 -7	31.380 29.520	.502 .462
-/	,-	1 7	29.230	.468
		1 <u>19</u> 32 2	27.450 26.640	.434 .427

NACA

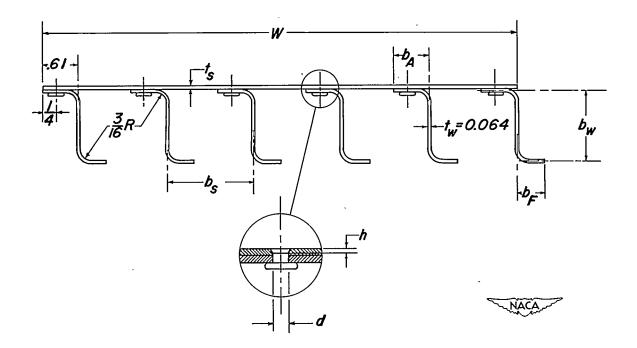


Figure I.— Cross section of test specimens.

8 . . •

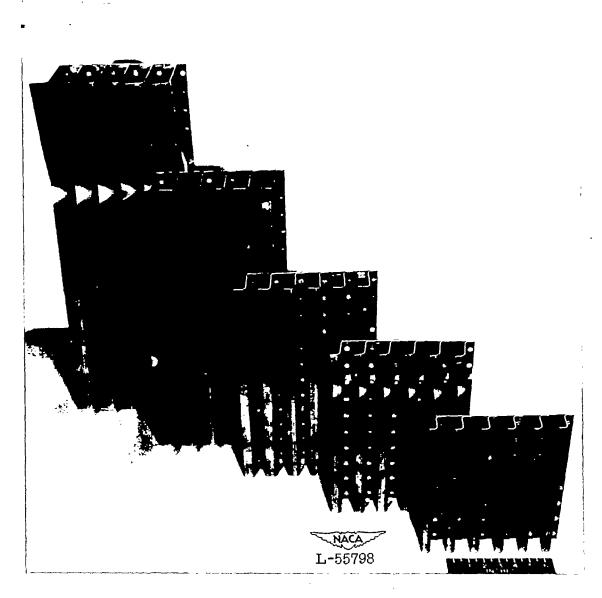


Figure 2.- Typical specimens after failure.

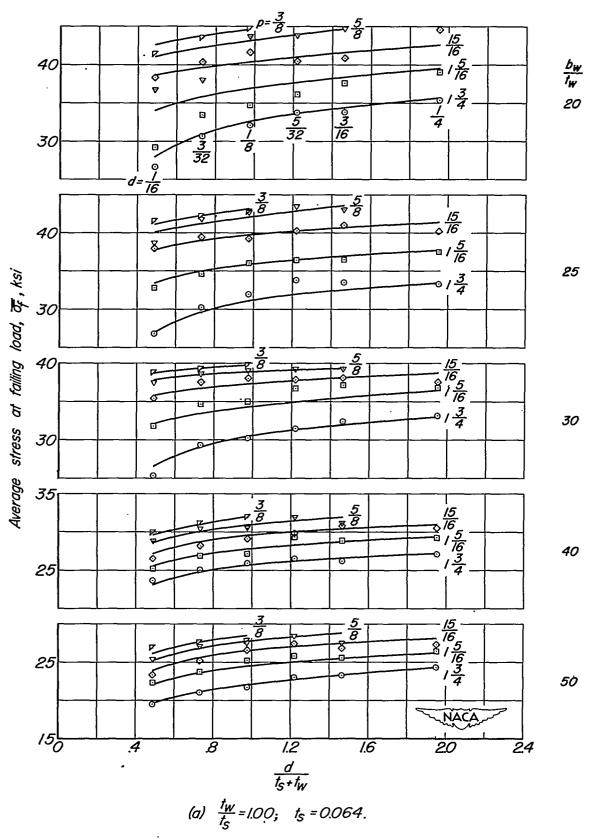
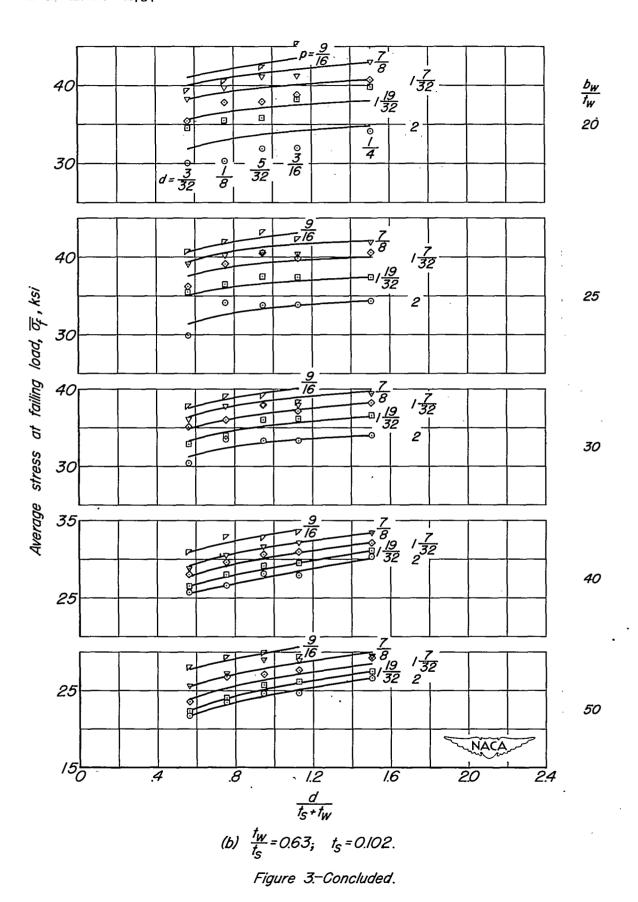



Figure 3.-Variation in compressive strength of panels with rivet diameter.

